首页 ›› 外国名著 ›› 思考,快与慢 ›› 附录A 不确定性下的判断:启发法和偏见 · 2
上一章:附录A 不确定性下的判断:启发法和偏见 · 1
下一章:附录A 不确定性下的判断:启发法和偏见 · 3
不只是天真的受试者才会误解概率。一项关于统计直觉的研究以有经验的心理学家为受试者,揭示了人们长期抱有的“小数法则”这一信念。这些受试者认为,他们抽取的样本即使很小,也具有很强的代表性。他们这样的回应反映了一个有效的假设:某个具有统计意义的样本结果可以代表样本所属的整个群体的性质,这与样本大小并无关联。因此,研究人员过于信任小样本的结果,高估了这些结果的可复制性。在实际的研究中,这些偏见会导致研究人员选择的样本不够大,并对仅有的发现作过多的阐释。
对可预测性的不敏感。有时,人们需要作一些数值上的预测,例如,预测某只股票的走势、某种商品的需求量或是某场球赛的最后比分。这样的预测经常是通过代表性作出的。例如,假设有个人在听了关于某家公司的描述之后,需要预测这家公司的未来收益。那么,如果这个人听到的描述是正面的,他就会预测这家公司将有非常高的收益,因为高收益最能代表那个描述;如果描述是普通的,这个人就会觉得公司的表现也会很普通。描述的好坏程度并不受该描述的可信程度以及精确程度的影响。因此,如果人们仅仅依靠描述的好坏来预测,那么他们的预测就会对证据的可靠性和预测的预期精确度不敏感。
这种判断模式违反了标准的统计理论。在标准的统计理论中,出于对可预测性的考虑,极端和预测范围受到了控制。当某件事的可预测性为零时,该预测的结果在任何情况下都应该是相同的。例如,如果在一些公司的描述中,没有听到有关其收益的信息,那么对所有这些公司未来收益的预测都应该是相同的。当然,如果某件事的可预测性非常高,那么预测值就会符合实际值,预测的范围也会等同于实际结果的范围。总之,可预测性越高,预测值的范围就会越广。
一些关于数值预测的研究表明:直觉性预测违反了这条规则,因为受试者很少甚至没有考虑过可预测性的问题。在其中一项研究里,受试者看了几段文字,每段文字都描述了一位实习老师在特定实习课上的表现。一些受试者需要根据那几段文字描述以百分制来评价特定总体的课堂质量,其他受试者则需要预测这些实习老师在5年以后的成就,同样要以百分制来打分。这两种情况下作的判断是相同的,即预测某一未来事件(老师在5年以后的成就)与评估当前事件所依据的信息(实习课的课堂质量)是相同的。作这些预测的人肯定也意识到了用某位老师5年以前的实习课来预测她的教学能力过于局限。不过,他们的预测与评估一样极端。
效度错觉。前面已经介绍过,人们常会挑选输入信息(例如对某个人的描述)中最具代表性的特点(例如职业)来进行预测。他们在预测时的自信程度主要取决于相关信息代表性的高低(即所选特点与输入信息的吻合程度),与限制预测准确性的因素关系不大。因此,人们在听到与图书管理员的典型形象相符合的性格描述后,就会极有自信地作出所描述的人就是一个图书管理员的预测,即使这个描述是片面的、不可靠的或是过时的。由于预测特点与输入信息非常吻合而产生的没有保证的自信就被称为效度错觉。即使当判断者意识到限制其预测准确性的因素时,这种错觉仍然存在。许多文献已经证实:甄选面谈的出错率很高,但即使心理学家知道这一点,在甄选面谈时,他们还是常会在预测中表现出很大的自信。尽管不断有证据表明甄选面谈是不恰当的,但临床上仍然持续依赖这种访谈方式,这也充分说明了效度错觉强大的影响力。
预测需要依靠输入,而输入模式的内部一致性就是决定人们在预测时自信程度的主要因素。例如,相比某个在一年级得了许多A但也得了许多C的学生来说,人们在预测一年级得了许多B的学生的平均绩点时会更有自信。高度一致的模式最常出现在输入变量过多或相关度高的时候。然而,相关统计学的结果证实,若规定了输入变量的效度,基于几个这种输入的预测会比输入过多或相关情况下的准确性高。因此,输入变量过多虽然可以增加自信程度,但却会降低预测的准确性。而人们在预测时所抱持的信心常会超出他们的能力范围。
误解回归性。假设让一群儿童做两套等效的能力测试题。如果你挑选出了在其中一套能力测试题中表现最好的10个人,那么他们在另一套测试中的表现通常会让你失望。相反,如果你挑选的是在其中一套能力测试中表现最差的10个人,你就会发现,他们在下一次测试中平均都比前一次测试表现得好。一般来说,假设变量X和Y有相同的分布。如果你挑选的X的平均分数偏离了X的均值K个单位,那么,Y的平均分通常偏离Y的均值的程度就会少于K个单位。这些观察表明了一个普遍的现象,即回归平均值现象。这个现象是高尔顿在100年前首次证明的。
在正常的生命过程中,你会遇到许多回归平均值的例子。例如,在比较父亲与儿子的身高,丈夫与妻子的智力水平或是某个人连续测试的不同表现时。不过,人们没能对此现象产生正确的直觉。首先,人们不能预料一些肯定会发生回归平均值的情境。其次,当他们辨别出回归平均值的发生时,总会捏造出虚假的因果解释。有这样一个信念:预测结果应该最大程度代表输入信息,因此,结果变量的值也应与输入变量的值一样极端。我们提出,回归平均值的现象之所以难以掌握就是因为与上述信念不相容。
未能意识到回归平均值的重要性将会带来严重的后果。下面这个例子就说明了这一点:在一次关于飞行训练的讨论中,有经验的指导员注意到,若赞扬某位飞行员着陆非常平稳,该飞行员下一次着陆就会表现得糟糕;若某位飞行员着陆较差,该飞行员下一次着陆就会有很大进步。这些指导员总结道,口头表扬对学习是有害的,而口头批评却大有益处,这与广为接受的心理学定律相左。由于回归平均值的存在,这个结论是没有根据的。就像其他重复的测试一样,每次表现糟糕以后总会有进步,而表现优异以后又总会变得糟糕,即使指导员没有对学员的第一次表现给予任何回应。指导员形成了惩罚比奖赏更有效这个错误且有潜在危害的结论,因为他们正好在着陆表现优异后表扬了这些学员,在着陆表现糟糕后批评了这些学员。
因此,未能理解回归效应会导致人们高估惩罚的有效性,低估奖赏的有效性。无论是在社会交往中,还是在训练中,表现得好都会有奖赏,表现得差也都会有惩罚。因此,行为最有可能在惩罚之后得到改进,在奖赏之后变得更坏,这其实就是一种回归现象。其结果就是:人们碰巧因为惩罚他人得到了奖赏,因为奖赏他人得到了惩罚。然而,人们通常不会意识到这种偶然性。事实上,难以掌握回归性主要是因为奖赏与惩罚带来的结果非常明显,因此,这个领域的学者也没有注意到它。
可得性
有时候,人们会通过能想到例子或事件的容易程度来评估这类事的频率或概率。例如,你可能会通过回忆自己认识的人中有多少位是心脏病患者来估测中年人患心脏病的风险。同样,你也可能会通过想象某个企业可能会遇到的各种难题来估测其倒闭的概率。这种判断启发式被称为可得性。可得性对于评估频率或概率来说,是个很有用的线索,因为相比频率较低的类别的例子来说,我们可以更好、更快地得到频率较高的类别的例子。然而,可得性并不受频率和概率的影响。因此,依赖于可得性会导致预测的偏见。我接下来将说明其中的一些偏见。
因例子的可提取性导致的偏见。当用某个类别的例子的可得性来判断该类别的大小时,例子很容易提取的类别会比频率相同但例子较难想到的类别显得更大。在证明此效应的基本研究中,受试者听到了一串知名人士的名字,男女均有。接着,他们需要判断这串名字中男性是否比女性多。不同组的受试者听到的名字并不相同。在一些名单中,男性更有名;而在另外一些名单中,女性则更有名。受试者都错误地判断了所有名单的类别(性别)。他们的判断显示,名人更多的类别,其数目也越大。除了熟悉度以外,显著程度也会影响例子的可提取性。例如,看见房子失火对这类事件主观概率的影响可能会比在报纸上读到失火这件事的影响要大。另外,最近发生的事有可能会比之前发生的事更容易获得。对于交通事故的主观概率会在见到一辆翻倒在路边的车后暂时升高,这很平常。
因搜索集合的有效性导致的偏见。假设从某个英文文本中随机抽取一个词(含有3个或更多字母的词)。这个词更有可能是以r开头还是以r作为第三个字母?人们在回答这个问题时,会回忆首字母为r的单词(例如road)以及第三个字母为r的单词(例如car),然后通过想到这两个词的容易程度来评估相对频率。因为从记忆中搜寻单词的首字母要比搜寻其第三个字母更为容易,所以大多数人都判断以某个辅音开头的单词要比第三个字母为该辅音的单词多。但实际上,例如r或k的辅音字母,出现在第三个字母的频率都要比出现在开头的频率高。
子午书屋(ziwushuwu.com)
上一章:附录A 不确定性下的判断:启发法和偏见 · 1
下一章:附录A 不确定性下的判断:启发法和偏见 · 3
· 推荐小说:爱的艺术 从新手到大师 黑暗物质三部曲 那不勒斯四部曲 如何阅读一本书 微习惯 乌合之众 小岛经济学